ANALYSIS OF PERFLUOROALKYL ANION FRAGMENTATION PATHWAYS FOR LINEAR AND BRANCHED PERFLUOROOCTANOIC ACIDS (PFOA) DURING LC/ESI-MS/MS

Gilles Arsenault^a, Brock Chittim^a, Alan McAlees^a, Robert McCrindle^b and Nicole Riddell^a.

^a Wellington Laboratories Inc., Research Division, Guelph, Ontario, N1G 3M5, Canada

^b Chemistry Dept., University of Guelph, Guelph, Ontario, N1G 2W1, Canada

Introduction

- LC-electrospray ionization-MS (LC/ESI-MS) and LC/ESI-MS/MS can be considered as the current standard for analysis of anionic perfluorinated compounds.1
- The belief by many is that the perfluoroalkyl anion fragments by 'unzipping' to produce $C_n F_{2n}$ species.²
- Initial analysis in our laboratory of the mass spectrum of MPFOA indicated that the fragmentation mechanism of a perfluoroalkyl anion is more complex than one 8 involving simple sequential loss of neutral C_nF_{2n} fragments.
- Indeed, recent work³ has shown that the fragmentation mechanism of linear perfluoroalkyl carboxylic acids involves, after initial decarboxylation, rapid fluorine shifts, which generate a series of new anions prior to secondary and tertiary fragmentation.

Objective

- To develop a fundamental understanding of the fragmentation mechanism for the perfluoroalkyl anions generated from perfluoroalkyl carboxylates under LC/ESI-MS/MS > conditions
- To extend the investigation of perfluoroalkyl fragmentation to branched PFOA isomers .

Experimental

Chemicals : The branched isomers of PFOA were obtained from Wellington Laboratories.

LCMS/MS: The analyses were conducted on a Waters Acquity Ultra Performance LC interfaced to a Micromass Quattro micro atmospheric pressure ionization (API) mass spectrometer (MS) in negative-ion electrospray mode. Tune parameters were optimized to promote the in-source fragmentation of each individual isomer from [R,-CO,]⁻ to [R_t]⁻. Product ion experiments were then carried out on [R_t]⁻ (argon collision gas ~ 3.5e-3 mbar; cone voltage: 15V – 30V; collision energies: 15eV – 25eV).

Results and Discussions

Fragmentation of LPFOA

- The study was performed on the various branched isomers of PFOA shown in Figure 1.
- > As expected, based on results of the previous study, LPFOA produces secondary daughter ion fragments at m/z 119, m/z 169 and m/z 219 (see figure 2). Note that no signals were detected at m/z 269 (from primary carbanions 1a and 1g, see Figure 3) nor at m/z 69 consistent with the lower stability of primary carbanions.
- The secondary daughter ion fragments produced for each PFOA isomer is shown in Figure 2.

Results and Discussion (con't)

Fragmentation of branched PFOA isomers

- As an example, the fragmentation of P4MHpA will be outlined:
 - Primary fragmentation (decarboxylation) produces the fragment m/z 369.
 - Rapid fluorine migration produces various anions (see figure 3).
 - It is known that order of stabilities of perfluoro carbanions is 3°>2°>1°.4 Therefore, fragment 5c containing the 3° carbanion (figure 3, highlighted) is expected to contain the highest equilibrium population. Consequently, upon secondary fragmentation, the strongest signal is m/z 119.

> The other branched PFOA isomers follow the same pattern of fragmentation through a tertiary carbanion, except for P2MHpA.

> P2MHpA shows minimal signs (see Figure 2) of the typical fragments m/z 369/219/169/119/etc but instead produces unique anions at m/z 85 [CF₃O] and m/z 63 [FCO]. This crowded carboxylate anion prefers to attack the neighboring alpha-CF3 instead of decarboxylating.

Relative response factors

- > The SIR relative response factor for the individual PFOA isomers are shown in Table 1.
- > Certain isomers showed significant reduction in their SIM response factors relative to LPFOA because of facile in-source fragmentation.
- The spectrum of P2MHpA is extremely weak because of the lack of "9-series" fragments.

Table 1. SIM response factors for the various branched PFOA isomers relative to linear PFOA (LPFOA)

Isomer	Р2МНрА	РЗМНрА	Р4МНрА	Р5МНрА	Р6МНрА	P55DMHxA	P44DMHxA	P45DMHxA	P35DMHxA
%Relative response factor (m/z 413)	1	40	90	110	100	90	50	75	36
%Relative response factor (multi-channel SIM: 413/369/269/219)	1	107	100	104	86	109	98	103	78

CF2=CFCF(CF3)CF2CF3

Figure 3. Fragmentation pathway for P4MHpA

- de Voogt, P., Sáez, M., 2006. Trends Anal. Chem. 25, 326-342.
 Lyon PA, Tomer KB, Gross ML. 1985. Anal. Chem. 57, 2984-2989.
 Arsenault et. al. 2007. Rapid Commun. Mass Spectrom. 21, 3803-3814.
 Kirsch, P. 2004. Modern Fluoroorganic Chemistry. Wiley-VCH, 103.

A manuscript of this work is in preparation